Challenges in the Development and Application of Organ-on-Chips for Intranasal Drug Delivery Studies

Author:

Usman Khan Muhammad1,Cai Xinyu1,Shen Zhiwei1,Mekonnen Taye2,Kourmatzis Agisilaos2,Cheng Shaokoon1,Gholizadeh Hanieh3

Affiliation:

1. School of Engineering, Macquarie University, Sydney, NSW 2113, Australia

2. School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia

3. Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA

Abstract

With the growing demand for the development of intranasal (IN) products, such as nasal vaccines, which has been especially highlighted during the COVID-19 pandemic, the lack of novel technologies to accurately test the safety and effectiveness of IN products in vitro so that they can be delivered promptly to the market is critically acknowledged. There have been attempts to manufacture anatomically relevant 3D replicas of the human nasal cavity for in vitro IN drug tests, and a couple of organ-on-chip (OoC) models, which mimic some key features of the nasal mucosa, have been proposed. However, these models are still in their infancy, and have not completely recapitulated the critical characteristics of the human nasal mucosa, including its biological interactions with other organs, to provide a reliable platform for preclinical IN drug tests. While the promising potential of OoCs for drug testing and development is being extensively investigated in recent research, the applicability of this technology for IN drug tests has barely been explored. This review aims to highlight the importance of using OoC models for in vitro IN drug tests and their potential applications in IN drug development by covering the background information on the wide usage of IN drugs and their common side effects where some classical examples of each area are pointed out. Specifically, this review focuses on the major challenges of developing advanced OoC technology and discusses the need to mimic the physiological and anatomical features of the nasal cavity and nasal mucosa, the performance of relevant drug safety assays, as well as the fabrication and operational aspects, with the ultimate goal to highlight the much-needed consensus, to converge the effort of the research community in this area of work.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3