Intravital Microscopy Reveals Endothelial Transcytosis Contributing to Significant Tumor Accumulation of Albumin Nanoparticles

Author:

Wei Guoguang1,Zhang Sihang1,Yu Sheng1,Lu Wei1ORCID

Affiliation:

1. Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, 826 Zhangheng Road, Shanghai 201203, China

Abstract

The principle of enhanced permeability and retention (EPR) effect has been used to design anti-cancer nanomedicines over decades. However, it is being challenged due to the poor clinical outcome of nanoparticles and controversial physiological foundation. Herein, we use a near-infrared-II (1000–1700 nm, NIR-II) fluorescence probe BPBBT to investigate the pathway for the entry of human serum albumin-bound nanoparticles (BPBBT-HSA NPs) into tumor compared with BPBBT micelles with phospholipid-poly (ethylene glycol) of the similar particle size about 110 nm. The plasma elimination half-life of BPBBT micelles was 2.8-fold of that of BPBBT-HSA NPs. However, the area under the BPBBT concentration in tumor-time curve to 48 h post-injection (AUCtumor0→48h) of BPBBT-HSA NPs was 7.2-fold of that of BPBBT micelles. The intravital NIR-II fluorescence microscopy revealed that BPBBT-HSA NPs but not BPBBT micelles were transported from the tumor vasculature into tumor parenchyma with high efficiency, and endocytosed by the tumor cells within 3 h post-injection in vivo. This effect was blocked by cross-linking BPBBT-HSA NPs to denature HSA, resulting in the AUCtumor0→48h decreased to 22% of that of BPBBT-HSA NPs. Our results demonstrated that the active process of endothelial transcytosis is the dominant pathway for albumin-bound nanoparticles’ entry into tumor.

Funder

National Natural Science Foundation of China

Shanghai Municipal Health Commission

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3