Biomimetic Silica Particles with Self-Loading BMP-2 Knuckle Epitope Peptide and Its Delivery for Bone Regeneration

Author:

Ki Mi-Ran12ORCID,Nguyen Thi Khoa My1,Park Tae-In1ORCID,Park Hae-Min3,Pack Seung Pil1

Affiliation:

1. Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea

2. Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea

3. Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea

Abstract

Biomimetic silica deposition is an in-situ immobilization method for bioactive molecules under biocompatible conditions. The osteoinductive P4 peptide derived from the knuckle epitope of bone morphogenetic protein (BMP), which binds to BMP receptor-II (BMPRII), has been newly found to contain silica formation ability. We found that the two lysine residues at the N-terminus of P4 played a vital role in silica deposition. The P4 peptide co-precipitated with silica during P4-mediated silicification, yielding P4/silica hybrid particles (P4@Si) with a high loading efficiency of 87%. P4 was released from P4@Si at a constant rate for over 250 h, representing a zero-order kinetic model. In flow cytometric analysis, P4@Si showed a 1.5-fold increase in the delivery capacity to MC3T3 E1 cells than the free form of P4. Furthermore, P4 was found anchored to hydroxyapatite (HA) through a hexa-glutamate tag, followed by P4-mediated silicification, yielding P4@Si coated HA. This suggested a superior osteoinductive potential compared to silica or P4 alone coated HA in the in vitro study. In conclusion, the co-delivery of the osteoinductive P4 peptide and silica by P4-mediated silica deposition is an efficient method for capturing and delivering its molecules and inducing synergistic osteogenesis.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3