Model-Informed Precision Dosing Software Tools for Dosage Regimen Individualization: A Scoping Review

Author:

Del Valle-Moreno Paula1ORCID,Suarez-Casillas Paloma1,Mejías-Trueba Marta12ORCID,Ciudad-Gutiérrez Pablo1,Guisado-Gil Ana Belén123ORCID,Gil-Navarro María Victoria123,Herrera-Hidalgo Laura12ORCID

Affiliation:

1. Department of Pharmacy, University Hospital Virgen del Rocío, 41013 Seville, Spain

2. Department of Infectious Diseases, Microbiology and Parasitology, Infectious Diseases Research Group, Institute of Biomedicine of Seville, University of Seville/Spanish National Research Council/University Hospital Virgen del Rocio, 41013 Seville, Spain

3. Centre for Biomedical Research Network on Infectious Diseases, 28029 Madrid, Spain

Abstract

Background: Pharmacokinetic nomograms, equations, and software are considered the main tools available for Therapeutic Drug Monitoring (TDM). Model-informed precision dosing (MIPD) is an advanced discipline of TDM that allows dose individualization, and requires a software for knowledge integration and statistical calculations. Due to its precision and extensive applicability, the use of these software is widespread in clinical practice. However, the currently available evidence on these tools remains scarce. Objectives: To review and summarize the available evidence on MIPD software tools to facilitate its identification, evaluation, and selection by users. Methods: An electronic literature search was conducted in MEDLINE, EMBASE, OpenAIRE, and BASE before July 2022. The PRISMA-ScR was applied. The main inclusion criteria were studies focused on developing software for use in clinical practice, research, or modelling. Results: Twenty-eight software were classified as MIPD software. Ten are currently unavailable. The remaining 18 software were described in depth. It is noteworthy that all MIPD software used Bayesian statistical methods to estimate drug exposure and all provided a population model by default, except NONMEN. Conclusions: Pharmacokinetic software have become relevant tools for TDM. MIPD software have been compared, facilitating its selection for use in clinical practice. However, it would be interesting to standardize the quality and validate the software tools.

Funder

Instituto de Salud Carlos III, cofinanced by the European Development Regional Fund (“A way to achieve Europe”), Subprograma Juan Rodés

Instituto de Salud Carlos III, cofinanced by the European Development Regional Fund (“A way to achieve Europe”), Subprograma Rio Hortega

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3