A Review of Quantitative Systems Pharmacology Models of the Coagulation Cascade: Opportunities for Improved Usability

Author:

Chung Douglas1,Bakshi Suruchi12,van der Graaf Piet H.12ORCID

Affiliation:

1. Quantitative Systems Pharmacology, Certara UK Limited, Sheffield S1 2BJ, UK

2. Division of Systems Pharmacology and Pharmacy, LACDR, University of Leiden, 2300 RA Leiden, The Netherlands

Abstract

Despite the numerous therapeutic options to treat bleeding or thrombosis, a comprehensive quantitative mechanistic understanding of the effects of these and potential novel therapies is lacking. Recently, the quality of quantitative systems pharmacology (QSP) models of the coagulation cascade has improved, simulating the interactions between proteases, cofactors, regulators, fibrin, and therapeutic responses under different clinical scenarios. We aim to review the literature on QSP models to assess the unique capabilities and reusability of these models. We systematically searched the literature and BioModels database reviewing systems biology (SB) and QSP models. The purpose and scope of most of these models are redundant with only two SB models serving as the basis for QSP models. Primarily three QSP models have a comprehensive scope and are systematically linked between SB and more recent QSP models. The biological scope of recent QSP models has expanded to enable simulations of previously unexplainable clotting events and the drug effects for treating bleeding or thrombosis. Overall, the field of coagulation appears to suffer from unclear connections between models and irreproducible code as previously reported. The reusability of future QSP models can improve by adopting model equations from validated QSP models, clearly documenting the purpose and modifications, and sharing reproducible code. The capabilities of future QSP models can improve from more rigorous validation by capturing a broader range of responses to therapies from individual patient measurements and integrating blood flow and platelet dynamics to closely represent in vivo bleeding or thrombosis risk.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3