Biocompatible Snowman-like Dimer Nanoparticles for Improved Cellular Uptake in Intrahepatic Cholangiocarcinoma

Author:

Chen Ruyin1,Pu Xingqun12,Liu Rongrong3,Dai Xiaomeng1ORCID,Ye Fangfu2,Zhao Chunxia4,Zhao Peng1,Ruan Jian1,Chen Dong135ORCID

Affiliation:

1. Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China

2. Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China

3. State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310003, China

4. Faculty of Engineering, Computer, and Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia

5. Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

Intrahepatic cholangiocarcinoma (ICC) is one of the most aggressive types of human cancers. Although paclitaxel (PTX) was proven to exert potent anti-tumor effects against ICC, the delivery of PTX is still challenging due to its hydrophobic property. Nanoparticle (NP)-based carriers have been proven to be effective drug delivery vehicles. Among their physicochemical properties, the shape of NPs plays a crucial role in their performance of cellular internalization and thus anti-tumor efficacy of loaded drugs. In this study, dumbbell-like and snowman-like dimer NPs, composed of a polylactic acid (PLA) bulb and a shellac bulb, were designed and prepared as drug nanocarriers to enhance the efficiency of cellular uptake and anti-tumor performance. PLA/shellac dimer NPs prepared through rapid solvent exchange and controlled co-precipitation are biocompatible and their shape could flexibly be tuned by adjusting the concentration ratio of shellac to PLA. Drug-loaded snowman-like PLA/shellac dimer NPs with a sharp shape exhibit the highest cellular uptake and best cell-killing ability against cancer cells in an in vitro ICC model over traditional spherical NPs and dumbbell-like dimer NPs, as proven with the measurements of flow cytometry, fluorescent confocal microscopy, and the CCK8 assay. The underlying mechanism may be attributed to the lower surface energy required for the smaller bulbs of snowman-like PLA/shellac dimer NPs to make the initial contact with the cell membrane, which facilitates the subsequent penetration through the cellular membrane. Therefore, these dimer NPs provide a versatile platform to tune the shape of NPs and develop innovative drug nanocarriers that hold great promise to enhance cellular uptake and therapeutic efficacy.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Scientific Research Fund of Zhejiang University

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3