Biosynthetic Melanin/Ce6-Based Photothermal and Sonodynamic Therapies Significantly Improved the Anti-Tumor Efficacy

Author:

Yang Yuping123ORCID,He Yaling4,Zhou Meijun2,Fu Meijun4,Li Xinxin4,Liu Hongmei12ORCID,Yan Fei4

Affiliation:

1. The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China

2. Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China

3. Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China

4. CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

Photothermal therapy (PTT) and sonodynamic therapy (SDT) are becoming promising therapeutic modalities against various tumors in recent years. However, the single therapeutic modality with SDT or PTT makes it difficult to achieve a satisfactory anti-tumor outcome due to their own inherent limitations, such as poor tissue penetration for the near-infrared (NIR) laser and the limited cytotoxic reactive oxygen species (ROS) generated from conventional sonosensitizers irradiated by ultrasound (US). Here, we successfully biosynthesized melanin with a controllable particle size with genetically engineered bacteria harboring a heat-inducible gene circuit. The biosynthetic melanin with 8 nm size and chlorin e6 (Ce6) was further encapsulated into liposomes and obtained SDT/PTT dual-functional liposomes (designated as MC@Lip). The resulting MC@Lip had an approximately 100 nm particle size, with 74.71% ± 0.54% of encapsulation efficiency for melanin and 94.52% ± 0.78% for Ce6. MC@Lip exhibited efficient 1O2 production and photothermal conversion capability upon receiving irradiation by US and NIR laser, producing significantly enhanced anti-tumor efficacy in vitro and in vivo. Especially, US and NIR laser irradiation of tumors received with MC@Lip lead to complete tumor regression in all tested tumor-bearing mice, indicating the great advantage of the combined use of SDT and PTT. More importantly, MC@Lip possessed good photoacoustic (PA) and fluorescence dual-modal imaging performance, making it possible to treat tumors under imaging guidance. Our study provides a novel approach to synthesize a melanin nanoparticle with controllable size and develops a promising combined SDT/PTT strategy to treat tumors.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Guangdong Innovation Platform of Translational Research for Cerebrovascular Diseases, Shenzhen Science and Technology Project

Natural Science Foundation of Guangdong Province

the Youth Research Foundation of Guangdong Second Provincial General Hospital

the science foundation of Guangdong Second Provincial General Hospital

the Research Project of Traditional Chinese Medicine Bureau of Guangdong Provincia

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3