Imageable AuNP-ECM Hydrogel Tissue Implants for Regenerative Medicine

Author:

Shilo Malka1ORCID,Baruch Ester-Sapir12,Wertheim Lior12,Oved Hadas1,Shapira Assaf1,Dvir Tal1345

Affiliation:

1. The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel

2. Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel

3. The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel

4. Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel

5. Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel

Abstract

In myocardial infarction, a blockage in one of the coronary arteries leads to ischemic conditions in the left ventricle of the myocardium and, therefore, to significant death of contractile cardiac cells. This process leads to the formation of scar tissue, which reduces heart functionality. Cardiac tissue engineering is an interdisciplinary technology that treats the injured myocardium and improves its functionality. However, in many cases, mainly when employing injectable hydrogels, the treatment may be partial because it does not fully cover the diseased area and, therefore, may not be effective and even cause conduction disorders. Here, we report a hybrid nanocomposite material composed of gold nanoparticles and an extracellular matrix-based hydrogel. Such a hybrid hydrogel could support cardiac cell growth and promote cardiac tissue assembly. After injection of the hybrid material into the diseased area of the heart, it could be efficiently imaged by magnetic resonance imaging (MRI). Furthermore, as the scar tissue could also be detected by MRI, a distinction between the diseased area and the treatment could be made, providing information about the ability of the hydrogel to cover the scar. We envision that such a nanocomposite hydrogel may improve the accuracy of tissue engineering treatment.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3