Synergistic Sustained Drug-Release System Based on Immobilized Rhamnus frangula L. Phytoextract into Layered Double Hydroxide Covered by Biocompatible Hydrogel

Author:

Neagu Ana-Lorena12,Zaharia Anamaria1,Pavel Octavian Dumitru3ORCID,Tîrşoaga Alina3,Neblea Iulia Elena12,Dolana Sorin Viorel12ORCID,Ţebrencu Carmen Elena45,Iordache Tanta-Verona1,Sârbu Andrei1ORCID,Zăvoianu Rodica3ORCID

Affiliation:

1. National Institute for Research and Development & Chemistry and Petrochemistry—ICECHIM, Bucharest, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania

2. Department of Bioresources and Polymer Science, Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, Str. Gh. Polizu No. 1–7, Sector1, 011061 Bucharest, Romania

3. Faculty of Chemistry, Research Center for Catalysts and Catalytic Processes, University of Bucharest, Bd. Regina Elisabeta No. 4-12, S3, 030018 Bucharest, Romania

4. Commercial Society for Medicinal Plant Research and Processing Plantavorelsa, Str. CuzaVoda, 46, Jud. Neamt, 610019 Piatra Neamt, Romania

5. Department of Chemical Sciences, Romanian Academy of Scientists, Str. Ilfov No. 3, S5, 050045 Bucharest, Romania

Abstract

This work focuses on the synergetic effect obtained by immobilization of Rhamnus frangula L. (RfL) phytoextract in layered double hydroxides (LDHs) matrixes and their subsequent encapsulation into biocompatible hydrogels (HG). In this respect, the LDHs were used as hosts for the immobilization of the phytoextract by a reconstruction method, after which the LDHsRfL were embedded into biocompatible hydrogel (HG) matrixes, based on polyethylene glycol diacrylate (PEGDA), by a radical polymerization reaction. The resulted biocompatible hydrogel composites were characterized by modern methods, while the swelling and rheology measurements revealed that the HG composites steadily improved as the content of RfL phytoextract immobilized on LDHs (LDHsRfL) increased. The following in vitro sustained release of the RfL phytoextract was highlighted by measurements at pH 6.8, in which case the composite HGs with LDHsRfL presented an improved release behavior over the LDHsRfL, thus, underlining the synergistic effect of PEGDA network and LDH particles on the slow-release behavior. The kinetic models used in the RfL release from composite HGs clearly indicate that the release is diffusion controlled in all the cases. The final composite HGs described here may find applications in the pharmaceutical field as devices for the controlled release of drugs.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3