Box–Behnken Design of Experiments of Polycaprolactone Nanoparticles Loaded with Irinotecan Hydrochloride

Author:

Mahmoud Basant Salah12ORCID,McConville Christopher1

Affiliation:

1. School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK

2. Hormones Department, Institute of Medical Research and Clinical Studies, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt

Abstract

Background: The Box–Behnken design of experiments (BBD) is a statistical modelling technique that allows the determination of the significant factors in developing nanoparticles (NPs) using a limited number of runs. It also allows the prediction of the best levels of variables to obtain the desired characteristics (size, charge, and encapsulation efficiency) of the NPs. The aim of this study was to examine the effect of the independent variables (amount of polymer and drug, and surfactant concentration) and their interaction on the characteristics of the irinotecan hydrochloride (IRH)-loaded polycaprolactone (PCL) NPs and to determine the most optimum conditions for producing the desired NPs. Methods: The development of the NPs was carried out by a double emulsion solvent evaporation technique with yield enhancement. The NPs data were fitted in Minitab software to obtain the best fit model. Results: By using BBD, the most optimum conditions for producing the smallest size, highest magnitude of charge, and highest EE% of PCL NPs were predicted to be achieved by using 61.02 mg PCL, 9 mg IRH, and 4.82% PVA, which would yield 203.01 nm, −15.81 mV, and 82.35% EE. Conclusion: The analysis by BBD highlighted that the model was a good fit to the data, confirming the suitability of the design of the experiments.

Funder

Egyptian government

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3