Docosahexaenoic Acid Ameliorates Contextual Fear Memory Deficits in the Tg2576 Alzheimer’s Disease Mouse Model: Cellular and Molecular Correlates

Author:

Badesso SaraORCID,Cartas-Cejudo Paz,Espelosin Maria,Santamaria EnriqueORCID,Cuadrado-Tejedor Mar,Garcia-Osta Ana

Abstract

Docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in the brain, is essential for successful aging. In fact, epidemiological studies have demonstrated that increased intake of DHA might lower the risk for developing Alzheimer’s disease (AD). These observations are supported by studies in animal models showing that DHA reduces synaptic pathology and memory deficits. Different mechanisms to explain these beneficial effects have been proposed; however, the molecular pathways involved are still unknown. In this study, to unravel the main underlying molecular mechanisms activated upon DHA treatment, the effect of a high dose of DHA on cognitive function and AD pathology was analyzed in aged Tg2576 mice and their wild-type littermates. Transcriptomic analysis of mice hippocampi using RNA sequencing was subsequently performed. Our results revealed that, through an amyloid-independent mechanism, DHA enhanced memory function and increased synapse formation only in the Tg2576 mice. Likewise, the IPA analysis demonstrated that essential neuronal functions related to synaptogenesis, neuritogenesis, the branching of neurites, the density of dendritic spines and the outgrowth of axons were upregulated upon-DHA treatment in Tg2576 mice. Our results suggest that memory function in APP mice is influenced by DHA intake; therefore, a high dose of daily DHA should be tested as a dietary supplement for AD dementia prevention.

Funder

Ministry of Science and Innovation

Foundation for Applied Medical Research, University of Navarra

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3