Development of an Alcohol Dilution–Lyophilization Method for the Preparation of mRNA-LNPs with Improved Storage Stability

Author:

Shirane Daiki1,Tanaka Hiroki2ORCID,Sakurai Yu2ORCID,Taneichi Sakura3,Nakai Yuta3,Tange Kota3,Ishii Itsuko4,Akita Hidetaka2ORCID

Affiliation:

1. Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-0856, Japan

2. Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan

3. DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki 210-0865, Japan

4. Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-0856, Japan

Abstract

The lipid nanoparticle (LNP) is one of the promising nanotechnologies for the delivery of RNA molecules, such as small interfering RNA (siRNA) and messenger RNA (mRNA). A series of LNPs that contain an mRNA encoding the antigen protein of SARS-CoV-2 were already approved as RNA vaccines against this infectious disease. Since LNP formulations are generally metastable, their physicochemical properties are expected to shift toward a more stable state during the long-time storage of suspensions. The current mRNA vaccines are supplied in the form of frozen formulations with a cryoprotectant for preventing deterioration. They must be stored in a freezer at temperatures from −80 °C to −15 °C. It is thought that therapeutic applications of this mRNA-LNP technology could be accelerated if a new formulation that permits mRNA-LNPs to be stored under milder conditions were available. We previously reported on a one-pot method for producing siRNA-encapsulated LNPs by combining freeze-drying technology with the conventional alcohol dilution method (referred to herein as the “alcohol dilution–lyophilization method”). In this study, this method was applied to the preparation of mRNA-LNPs to provide a freeze-dried formulation of mRNA LNPs. The resulting formulation can be stored at 4 °C for at least 4 months.

Funder

JSPS KAKENHI

Kato Memorial Bioscience Foundation

JST CREST

Asahi Glass Foundation

NOF CORPORATION

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3