Thermophilic Exopolysaccharide Films: A Potential Device for Local Antibiotic Delivery

Author:

Laubach Joseph M.12,Sani Rajesh K.123ORCID

Affiliation:

1. Department of Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA

2. BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA

3. Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA

Abstract

Natural polysaccharides being investigated for use in the field of drug delivery commonly require the addition of sugars or pretreated biomass for fabrication. Geobacillus sp. strain WSUCF1 is a thermophile capable of secreting natural polymers, termed exopolysaccharides (EPSs), cultivated from cost-effective, non-treated lignocellulosic biomass carbon substrates. This preliminary investigation explores the capabilities of a 5% wt/wt amikacin-loaded film constructed from the crude EPS extracted from the strain WSUCF1. Film samples were seen to be non-cytotoxic to human keratinocytes and human skin-tissue fibroblasts, maintaining cell viability, on average, above 85% for keratinocytes over 72-h during a cell viability assay. The drug release profile of a whole film sample revealed a steady release of the antibiotic up to 12 h. The amikacin eluted by the EPS film was seen to be active against Staphylococcus aureus, maintaining above a 91% growth inhibition over a period of 48 h. Overall, this study demonstrates that a 5% amikacin-EPS film, grown from lignocellulosic biomass, can be a viable option for preventing or combating infections in clinical treatment.

Funder

National Science Foundation

Department of Chemical and Biological Engineering at the South Dakota School of Mines and Technology

NSF RII T1

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3