An In Vitro Evaluation of the Potential Neuroprotective Effects of Intranasal Lipid Nanoparticles Containing Astaxanthin Obtained from Different Sources: Comparative Studies

Author:

Torres Joana12ORCID,Pereira José Miguel23ORCID,Marques-Oliveira Rita23ORCID,Costa Inês23,Gil-Martins Eva23ORCID,Silva Renata23ORCID,Remião Fernando23ORCID,Peixoto Andreia Filipa4ORCID,Sousa Lobo José Manuel12ORCID,Silva Ana Catarina125ORCID

Affiliation:

1. UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal

2. Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal

3. UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal

4. LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4099-002 Porto, Portugal

5. FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4099-002 Porto, Portugal

Abstract

The intranasal route has been suggested as a promising alternative to improve the direct transport of molecules to the brain, avoiding the need to cross the blood–brain barrier (BBB). In this area, the use of lipid nanoparticles, namely solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), has been highlighted as a promising strategy to improve the treatment of neurodegenerative diseases. In this work, formulations containing SLN and NLC that were loaded with astaxanthin that was obtained from different sources (astaxanthin extract (AE) from the algae Haematococcus pluvialis and pure astaxanthin (PA) from the fungi Blakeslea trispora) were prepared for nose-to-brain administration, and comparative in vitro experiments were performed to evaluate the biocompatibility of the formulations with nasal (RPMI 2650) and neuronal (SH-SY5Y) cells. Afterwards, the antioxidant activity of the formulations was evaluated for its potential neuroprotective effects, using different chemical aggressors. Finally, the cellular uptake of the astaxanthin was evaluated for the formulations that showed the greatest neuroprotection of the neuronal cells against chemical-induced damage. On the production day, all the formulations showed a particle size, a high encapsulation efficiency (EE), the presence of nanoparticles with a typical spherical shape, and a polydispersity index (PDI) and zeta potential (ZP) that are suitable for nose-to-brain administration. After three months of storage at room temperature, no significant changes were observed in the characterization parameters, predicting a good long-term stability. Furthermore, these formulations were shown to be safe with concentrations of up to 100 µg/mL in differentiated SH-SY5Y and RPMI 2650 cells. Regarding neuroprotection studies, the PA-loaded SLN and NLC formulations showed an ability to counteract some mechanisms of neurodegeneration, including oxidative stress. Moreover, when compared with the PA-loaded SLN, the PA-loaded NLC showed greater neuroprotective effects against the cytotoxicity induced by aggressors. In contrast, the AE-loaded SLN and NLC formulations showed no significant neuroprotective effects. Although further studies are needed to confirm these neuroprotective effects, the results of this study suggest that the intranasal administration of PA-loaded NLC may be a promising alternative to improve the treatment of neurodegenerative diseases.

Funder

Fundação para a Ciência e a Tecnologia—FCT

Individual Call to Scientific Employment Stimulus

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3