Retinal Pigment Epithelial Cell Line with Fast Differentiation and Improved Barrier Properties

Author:

Hellinen ,Pirskanen ,Tengvall-Unadike ,Urtti ,Reinisalo

Abstract

Retinal pigment epithelium (RPE) acts as an outer blood–retinal barrier that limits the access of circulating xenobiotics to the eye. In addition, the RPE limits posterior elimination of intravitreally injected drugs to circulation. Thus, permeation in the RPE has a significant effect on ocular pharmacokinetics. The RPE is also a potentially important drug target in age-related macular degeneration. Therefore, the cell models of the RPE are important tools in ocular drug development, but poor availability and problems in reproducibility limit the use of primary RPE cell cultures. Furthermore, the best and widely used human cell line ARPE19 requires specialized culture conditions and a long time for cellular differentiation. In this paper, we describe a cell population arisen from the ARPE19 culture, with fast differentiation and improved barrier properties. This cell line, LEPI, forms clear microvilli and rapidly displays RPE-like cobblestone morphology after subculture in simple culture conditions. The LEPI cells show RPE-specific functions and expression of RPE65, ezrin, and BEST1 proteins. On filter, the LEPI cells develop tighter barrier than the ex vivo bovine RPE-choroid: permeability coefficients of beta-blockers (atenolol, nadolol, timolol, pindolol, metoprolol, betaxolol) ranged from 0.4 × 10−6 cm/sec to 2.3 × 10−6 cm/sec depending on the drug lipophilicity. This rapidly differentiating cell line will be an asset in ocular studies since it is easily maintained, it grows and differentiates quickly and does not require specialized culture conditions for differentiation. Thus, this cell line is suitable for both small scale assays and high throughput screening in drug discovery and development.

Funder

Academy of Finland

Suomen Kulttuurirahasto

Government of Russian Federation, Mega-Grant

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3