The Investigation of Flory–Huggins Interaction Parameters for Amorphous Solid Dispersion Across the Entire Temperature and Composition Range

Author:

Tian YiweiORCID,Qian Kaijie,Jacobs EstherORCID,Amstad Esther,Jones David S.,Stella LorenzoORCID,Andrews Gavin P.

Abstract

Amorphous solid dispersion (ASD) is one of the most promising enabling formulations featuring significant water solubility and bioavailability enhancements for biopharmaceutical classification system (BCS) class II and IV drugs. An accurate thermodynamic understanding of the ASD should be established for the ease of development of stable formulation with desired product performances. In this study, we report a first experimental approach combined with classic Flory–Huggins (F–H) modelling to understand the performances of ASD across the entire temperature and drug composition range. At low temperature and drug loading, water (moisture) was induced into the system to increase the mobility and accelerate the amorphous drug-amorphous polymer phase separation (AAPS). The binodal line indicating the boundary between one phase and AAPS of felodipine, PVPK15 and water ternary system was successfully measured, and the corresponding F–H interaction parameters (χ) for FD-PVPK15 binary system were derived. By combining dissolution/melting depression with AAPS approach, the relationship between temperature and drug loading with χ (Φ, T) for FD-PVPK15 system was modelled across the entire range as χ = 1.72 − 852/T + 5.17·Φ − 7.85·Φ2. This empirical equation can provide better understanding and prediction for the miscibility and stability of drug-polymer ASD at all conditions.

Funder

Royal Academy of Engineering

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3