Quantitative Structure-Activity Relationship of Enhancers of Licochalcone A and Glabridin Release and Permeation Enhancement from Carbomer Hydrogel

Author:

Wang Zhuxian,Xue Yaqi,Zhu Zhaoming,Hu Yi,Zeng Quanfu,Wu Yufan,Wang Yuan,Shen Chunyan,Jiang Cuiping,Liu Li,Zhu Hongxia,Liu Qiang

Abstract

This study aimed to systematically compare licochalcone A (LicA) and glabridin (Gla) (whitening agents) release and permeation from Carbomer 940 (CP) hydrogels with different enhancers, and evaluate the relationship between the quantitative enhancement efficacy and structures of the enhancers. An in vitro release study and an in vitro permeation experiment in solution and hydrogels using porcine skin were performed. We found that the Gla–CP hydrogel showed a higher drug release and skin retention amount than LicA–CP due to the higher solubility in medium and better miscibility with the skin of Gla than that of LicA. Enhancers with a higher molecular weight (MW) and lower polarizability showed a higher release enhancement effect (ERrelease) for both LicA and Gla. The Van der Waals forces in the drug–enhancers–CP system were negatively correlated with the drug release percent. Moreover, enhancers with a higher log P and polarizability displayed a higher retention enhancement effect in solution (ERsolution retention) for LicA and Gla. Enhancers decreased the whole intermolecular forces indrug–enhancers-skin system, which had a linear inhibitory effect on the drug retention. Moreover, C=O of ceramide acted asthe enhancement site for drug permeation. Consequently, Transcutol® P (TP) and propylene glycol (PG), seven enhancers showed a higher retention enhancement effect in hydrogel (ERhydrogel retention) for LicA and Gla. Taken together, the conclusions provide a strategy for reasonable utilization of enhancers and formulation optimization in topical hydrogel whitening.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3