Combining Therapeutic Drug Monitoring and Pharmacokinetic Modelling Deconvolutes Physiological and Environmental Sources of Variability in Clozapine Exposure

Author:

Wills Kenneth H.,Behan Stephen J.,Nance Michael J.,Dawson Jessica L.,Polasek Thomas M.,Hopkins Ashley M.ORCID,van Dyk Madelé,Rowland Andrew

Abstract

Background: Clozapine is a key antipsychotic drug for treatment-resistant schizophrenia but exhibits highly variable pharmacokinetics and a propensity for serious adverse effects. Currently, these challenges are addressed using therapeutic drug monitoring (TDM). This study primarily sought to (i) verify the importance of covariates identified in a prior clozapine population pharmacokinetic (popPK) model in the absence of environmental covariates using physiologically based pharmacokinetic (PBPK) modelling, and then to (ii) evaluate the performance of the popPK model as an adjunct or alternative to TDM-guided dosing in an active TDM population. Methods: A popPK model incorporating age, metabolic activity, sex, smoking status and weight was applied to predict clozapine trough concentrations (Cmin) in a PBPK-simulated population and an active TDM population comprising 142 patients dosed to steady state at Flinders Medical Centre in Adelaide, South Australia. Post hoc analyses were performed to deconvolute the impact of physiological and environmental covariates in the TDM population. Results: Analysis of PBPK simulations confirmed age, cytochrome P450 1A2 activity, sex and weight as physiological covariates associated with variability in clozapine Cmin (R2 = 0.7698; p = 0.0002). Prediction of clozapine Cmin using a popPK model based on these covariates accounted for <5% of inter-individual variability in the TDM population. Post hoc analyses confirmed that environmental covariates accounted for a greater proportion of the variability in clozapine Cmin in the TDM population. Conclusions: Variability in clozapine exposure was primarily driven by environmental covariates in an active TDM population. Pharmacokinetic modelling can be used as an adjunct to TDM to deconvolute sources of variability in clozapine exposure.

Funder

Cancer Council SA

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3