Abstract
Background: Clozapine is a key antipsychotic drug for treatment-resistant schizophrenia but exhibits highly variable pharmacokinetics and a propensity for serious adverse effects. Currently, these challenges are addressed using therapeutic drug monitoring (TDM). This study primarily sought to (i) verify the importance of covariates identified in a prior clozapine population pharmacokinetic (popPK) model in the absence of environmental covariates using physiologically based pharmacokinetic (PBPK) modelling, and then to (ii) evaluate the performance of the popPK model as an adjunct or alternative to TDM-guided dosing in an active TDM population. Methods: A popPK model incorporating age, metabolic activity, sex, smoking status and weight was applied to predict clozapine trough concentrations (Cmin) in a PBPK-simulated population and an active TDM population comprising 142 patients dosed to steady state at Flinders Medical Centre in Adelaide, South Australia. Post hoc analyses were performed to deconvolute the impact of physiological and environmental covariates in the TDM population. Results: Analysis of PBPK simulations confirmed age, cytochrome P450 1A2 activity, sex and weight as physiological covariates associated with variability in clozapine Cmin (R2 = 0.7698; p = 0.0002). Prediction of clozapine Cmin using a popPK model based on these covariates accounted for <5% of inter-individual variability in the TDM population. Post hoc analyses confirmed that environmental covariates accounted for a greater proportion of the variability in clozapine Cmin in the TDM population. Conclusions: Variability in clozapine exposure was primarily driven by environmental covariates in an active TDM population. Pharmacokinetic modelling can be used as an adjunct to TDM to deconvolute sources of variability in clozapine exposure.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献