Development of Solvent-Free Co-Ground Method to Produce Terbinafine Hydrochloride Cyclodextrin Binary Systems; Structural and In Vitro Characterizations

Author:

Kondoros Balázs AttilaORCID,Jójárt-Laczkovich Orsolya,Berkesi Ottó,Szabó-Révész PiroskaORCID,Csóka IldikóORCID,Ambrus RitaORCID,Aigner Zoltán

Abstract

Molecular complexation with cyclodextrins (CDs) has long been a known process for modifying the physicochemical properties of problematic active pharmaceutical ingredients with poor water solubility. In current times, the focus has been on the solvent-free co-grinding process, which is an industrially feasible process qualifying as a green technology. In this study, terbinafine hydrochloride (TER), a low solubility antifungal drug was used as a model drug. This study aimed to prepare co-ground products and follow through the preparation process of the co-grinding method in the case of TER and two amorphous CD derivatives: (2-hydroxypropyl)-β-cyclodextrin (HPBCD); heptakis-(2,6-di-O-methyl)-β-cyclodextrin (DIMEB). For this evaluation, the following analytical tools and methods were used: phase solubility studies, differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), hot-stage X-ray powder diffractometry (HOT-XRPD), Fourier-transform infrared (FT-IR), Raman spectroscopy, and Scanning Electron Microscopy (SEM). Furthermore, in vitro characterization (dissolution and diffusion studies) was performed in two kinds of dissolution medium without enzymes. In the XRPD and SEM studies, it was found that the co-grinding of the components resulted in amorphous products. FT-IR and Raman spectroscopies confirmed the formation of an inclusion complex through the unsaturated aliphatic chain of TER and CDs. In vitro characterization suggested better dissolution properties for both CDs and decreased diffusion at higher pH levels in the case of HPBCD.

Funder

Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-EGA funding scheme

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3