A ‘Relay’-Type Drug-Eluting Nerve Guide Conduit: Computational Fluid Dynamics Modeling of the Drug Eluting Efficiency of Various Drug Release Systems

Author:

Zhou JiaruiORCID,Vijayavenkataraman SanjairajORCID

Abstract

Nerve guidance conduits (NGCs) are tubular scaffolds that act as a bridge between the proximal and distal ends of the native nerve to facilitate the nerve regeneration. The application of NGCs is mostly limited to nerve defects less than 3 mm due to the lack of sufficient cells in the lumen. The development of drug-release-system-embedded NGCs has the potential to improve the nerve regeneration performance by providing long-term release of growth factors. However, most of the past works only focused on one type of drug release system, limiting the variation in drug release system types and features. Therefore, in this study, computer-aided design (CAD) models were constructed and Computational Fluid Dynamics (CFD) simulations were carried out to investigate the effect of growth factor transporting efficiency on different drug release systems. To overcome the challenges posed by the current NGCs in treating long nerve gap injuries (>4 cm), a novel ‘relay’ NGC design is first proposed in this paper and has the potential to improve the nerve regeneration performance to next level. The intermediate cavities introduced along the length of the multi-channel NGCs act as a relay to further enhance the cell concentrations or growth factor delivery as well as the regeneration performance. Four different drug release systems, namely, a single-layer microsphere system, a double-layer microsphere system, bulk hydrogel, and hydrogel film, were chosen for the simulation. The results show that the double-layer microsphere system achieves the highest growth factor volume fraction among all the drug release systems. For the single-layer microsphere system, growth factor concentration can be significantly improved by increasing the microsphere quantities and decreasing the diameter and adjacent distance of microspheres. Bulk hydrogel systems hold the lowest growth factor release performance, and the growth factor concentration monotonically increased with the increase of film thickness in the hydrogel film system. Owing to the easy fabrication of hydrogel film and the even distribution of growth factors, the hydrogel film system can be regarded as a strong candidate in drug-eluting NGCs. The use of computational simulations can be regarded as a guideline for the design and application of drug release systems, as well as a promising tool for further nerve tissue engineering study.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3