Chemoprevention of Urothelial Cell Carcinoma Tumorigenesis by Dietary Flavokawain A in UPII-Mutant Ha-ras Transgenic Mice

Author:

Liu ZhongboORCID,Song Liankun,Xie Jun,Simoneau Anne R.,Uchio Edward,Zi Xiaolin

Abstract

Non-muscle-invasive bladder cancer (NMIBC) has one of the highest recurrence rates among all solid cancers and the highest lifetime treatment cost per patient. Therefore, the development of chemoprevention strategies for reducing the occurrence and recurrence of NMIBC as well as its burdens on the healthcare system is valuable. Our aim was to determine whether flavokawain A (FKA), a kava chalcone isolated from the kava plant, can target the in vivo activated Ha-ras pathway for prevention and treatment of NMIBC. UPII-mutant Ha-ras transgenic mice that develop papillary urothelial cell carcinoma were fed orally with vehicle control or FKA-formulated food for 6 months starting at 6 weeks of age. Seventy-nine percent (15/19) of male mice fed with 6 g FKA per kilogram (kg) of food survived beyond the 6 months of treatment, while 31.6% (6/19) of control food-fed male mice survived the 6-month treatment period (p = 0.02). The mean bladder weights in FKA vs. control food-fed mice were 0.216 ± 0.033 vs. 0.342 ± 0.039 g in male mice (p = 0.0413) and 0.043 ± 0.004 vs. 0.073 ± 0.004 g in female mice (p < 0.0001); FKA reduced bladder weight by 37% and 41%, respectively. The tumor burdens, determined by the wet bladder weight, in these mice were inversely related to plasma FKA concentrations. In addition to decreased bladder weight, FKA treatment significantly reduced the incidences of hydronephrosis and hematuria. FKA-treated mice exhibited more well-differentiated tumors in the bladder and ureter. Immunohistochemical analysis of FKA-treated tumors compared to those in the control group revealed fewer Ki-67- and survivin-positive cells and an increased number of p27- and TUNEL-positive cells, indicating that FKA inhibits proliferation and induces apoptosis. Overall, the results suggest that FKA can target the in vivo activated Ha-ras pathway for the prevention and treatment of NMIBC.

Funder

National Cancer Institute

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3