Safety and Prophylactic Efficacy of Liposome-Based Vaccine against the Drug-Resistant Acinetobacter baumannii in Mice

Author:

Khan Masood AlamORCID,Allemailem Khaled S.ORCID,Maswadeh HamzahORCID,Younus HinaORCID

Abstract

In recent years, the emergence of multidrug-resistant Acientobacter baumannii has greatly threatened public health and depleted our currently available antibacterial armory. Due to limited therapeutic options, the development of an effective vaccine formulation becomes critical in order to fight this drug-resistant pathogen. The objective of the present study was to develop a safe vaccine formulation that can be effective against A. baumannii infection and its associated complications. Here, we prepared liposomes-encapsulated whole cell antigens (Lip-WCAgs) as a vaccine formulation and investigated its prophylactic efficacy against the systemic infection of A. baumannii. The immunization with Lip-WCAgs induced the higher production of antigen-specific antibody titers, greater lymphocyte proliferation, and increased secretion of Th1 cytokines, particularly IFN-γ and IL-12. Antisera from Lip-WCAgs-immunized mice showed the utmost bactericidal activity and potently inhibited the biofilm formation by A. baumannii. Interestingly, Lip-WCAgs-induced immune response was translated in in vivo protection studies as the immunized mice exhibited the highest resistance to A. baumannii infection. Mice in the group immunized with Lip-WCAgs had an 80% survival rate and a bacterial burden of 5464 ± 1193 CFUs per gram of the lung tissue, whereas the mice immunized with IFA-WCAgs had a 50% survival rate and 51,521 ± 8066 CFUs. In addition, Lip-WCAgs vaccinated mice had lower levels of the inflammatory markers, including CRP, IL-6, IL-1β, and TNF-α. The findings of this study suggest that Lip-WCAgs may be considered a potential vaccine formulation to protect individuals against A. baumannii infection.

Funder

Deanship of Scientific Research, Qassim University, Buraydah, Saudi Arabia

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3