Effects of Ultramicronized N-Palmitoylethanolamine Supplementation on Tramadol and Oxycodone Analgesia and Tolerance Prevention

Author:

Micheli LauraORCID,Lucarini ElenaORCID,Toti AlessandraORCID,Ferrara Valentina,Ciampi Clara,Parisio CarmenORCID,Bartolucci GianlucaORCID,Di Cesare Mannelli LorenzoORCID,Ghelardini Carla

Abstract

Chronic pain management requires increasing doses of opioids, the milestone of painkillers, which may result in the onset of tolerance with exacerbated side effects. Maintaining stable analgesia with low doses of opioids is thus imperative. N-palmitoylethanolamine (PEA) is an endogenous lipid compound endowed with pain-relieving as well as anti-inflammatory properties. The ultramicronized formulation of PEA was recently demonstrated to be able to modulate morphine’s effects, delaying tolerance and improving efficacy. To evaluate the possible application to other opioids, in this study, we analysed the capacity of ultramicronized PEA to regulate analgesia and tolerance induced by oxycodone and tramadol. Pre-emptive and continuative treatment with ultramicronized PEA (30 mg kg−1, daily, per os) delayed the onset of opioid tolerance and enhanced opioid analgesia when it was acutely administered in association with tramadol (20 mg kg−1, daily, subcutaneously) or oxycodone (0.5 mg kg−1, daily, subcutaneously). Moreover, PEA exerted antinociceptive effects on tolerant rats, suggesting the use of PEA together with opioids for stable, long-lasting analgesia. To that purpose, the oxycodone dose needed to be increased from 0.3 mg kg−1 (day 1) up to 1 mg kg−1 (day 31) in the oxycodone + vehicle group; the tramadol dose was progressively enhanced from 15 mg kg−1 to 50 mg kg−1 in 31 days in the tramadol + vehicle group. Acute oral co-treatment with PEA (120 mg kg−1) achieved the same analgesia without increasing the dose of both opioids. The behavioural effects of PEA on opioid chronic treatment paralleled a decrease in astrocyte activation in the dorsal horn of the spinal cord (a marker of the development of opioid tolerance) and with a modulation of mRNA expression of IL-6 and serpin-A3. In conclusion, pre- and co-administration of ultramicronized PEA delayed the development of tramadol tolerance, potentiating either oxycodone or tramadol analgesia and allowing a long-lasting analgesic effect with a low opioid dose regimen. The use of PEA is suggested for clinical purposes to support the opioid-based management of persistent pain.

Funder

University of Florence

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3