Abstract
The multi-inlet vortex mixer (MIVM) has emerged as a novel bottom-up technology for solid nanoparticle preparation. However, its performance in liposome preparation remains unknown. Here, two key process parameters (aqueous/organic flow rate ratio (FRR) and total flow rate (TFR)) of MIVM were investigated for liposome preparation. For this study, two model drugs (lysozyme and erythromycin) were chosen for liposome encapsulation as the representative hydrophilic and hydrophobic drugs, respectively. In addition, two modified MIVMs, one with herringbone-patterned straight inlets and one with zigzag inlets, were designed to further improve the mixing efficiency, aiming to achieve better drug encapsulation. Data showed that FRR played an important role in liposome size control, and a size of <200 nm was achieved by FRR higher than 3:1. Moreover, increasing TFR (from 1 to 100 mL/min) could further decrease the size at a given FRR. However, similar regularities in controlling the encapsulation efficiency (EE%) were only noted in erythromycin-loaded liposomes. Modified MIVMs improved the EE% of lysozyme-loaded liposomes by 2~3 times at TFR = 40 mL/min and FRR = 3:1, which was consistent with computational fluid dynamics simulations. In summary, the good performance of MIVM in the control of particle size and EE% makes it a promising tool for liposome preparation, especially for hydrophobic drug loading, at flexible production scales.
Funder
University Grants Committee
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献