Chiral Recognition R- and RS- of New Antifungal: Complexation/Solubilization/Dissolution Thermodynamics and Permeability Assay

Author:

Volkova Tatyana V.,Simonova Olga R.,Levshin Igor B.ORCID,Perlovich German L.ORCID

Abstract

Novel potential antifungal of 1,2,4-triazole class have been synthesized as pure enantiomer (R-98) and racemic (RS-186). The effect of 2-hydroxypropyl-β-cyclodextrin (CD) on the solubility and permeability of RS-186 and R-98 in terms of chiral recognition was investigated. Phase solubility studies were carried out at 4 temperatures in 0–0.05 M CD concentration range for pH 2.0 and pH 7.4. AL- and AL−-type phase-solubility profiles were obtained for both compounds in pH 2.0 and pH 7.4. The racemic formed more stable complexes with CD as compared to R-isomer. Disclosing of chiral discrimination was facilitated using the approach based on the complex consideration of the derived complexation/solubilization/inherent dissolution thermodynamic functions, including the differential parameters between the racemic compound and R-enantiomer. The differences in the thermodynamic parameters determined by the chirality were discussed in terms of the driving forces of the processes and the main interactions of the compounds with CD in solution. The membrane permeability of both samples in the presence of CD was accessed in order to evaluate the specificity of enantioselective transport through the lipophilic membrane. The solubility/permeability interrelation was disclosed. The investigated compounds were classified as medium permeable in pure buffers and low permeable in the presence of 0.01 M CD. The obtained results can be useful for the design of pharmaceutical products in the form of liquid formulations based on the investigated substances.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3