Synthesis and Biological Evaluation of Highly Active 7-Anilino Triazolopyrimidines as Potent Antimicrotubule Agents

Author:

Oliva Paola,Romagnoli RomeoORCID,Cacciari Barbara,Manfredini StefanoORCID,Padroni Chiara,Brancale AndreaORCID,Ferla SalvatoreORCID,Hamel Ernest,Corallo Diana,Aveic SanjaORCID,Milan NoemiORCID,Mariotto ElenaORCID,Viola GiampietroORCID,Bortolozzi RobertaORCID

Abstract

Two different series of fifty-two compounds, based on 3′,4′,5′-trimethoxyaniline (7a–ad) and variably substituted anilines (8a–v) at the 7-position of the 2-substituted-[1,2,4]triazolo [1,5-a]pyrimidine nucleus, had moderate to potent antiproliferative activity against A549, MDA-MB-231, HeLa, HT-29 and Jurkat cancer cell lines. All derivatives with a common 3-phenylpropylamino moiety at the 2-position of the triazolopyrimidine scaffold and different halogen-substituted anilines at its 7-position, corresponding to 4′-fluoroaniline (8q), 4′-fluoro-3′-chloroaniline (8r), 4′-chloroaniline (8s) and 4′-bromoaniline (8u), displayed the greatest antiproliferative activity with mean IC50′s of 83, 101, 91 and 83 nM, respectively. These four compounds inhibited tubulin polymerization about 2-fold more potently than combretastatin A-4 (CA-4), and their activities as inhibitors of [3H]colchicine binding to tubulin were similar to that of CA-4. These data underlined that the 3′,4′,5′-trimethoxyanilino moiety at the 7-position of the [1,2,4]triazolo [1,5-a]pyrimidine system, which characterized compounds 7a–ad, was not essential for maintaining potent antiproliferative and antitubulin activities. Compounds 8q and 8r had high selectivity against cancer cells, and their interaction with tubulin led to the accumulation of HeLa cells in the G2/M phase of the cell cycle and to apoptotic cell death through the mitochondrial pathway. Finally, compound 8q significantly inhibited HeLa cell growth in zebrafish embryos.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference62 articles.

1. Changes in the leading cause of death: Recent patterns in heart disease and cancer mortality;Heron;NCHS Data Brief,2016

2. Cancer incidence and trends. Surgical oncology for the general surgeon, an issue of surgical clinics;Hulvat;Surg. Clin.,2020

3. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

4. Transitions From Heart Disease to Cancer as the Leading Cause of Death in US States, 1999–2016

5. Current Cancer Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3