Abstract
An inclusion complexation, between polymerized β-cyclodextrin and cholesterol end-capping branched polyethylene glycol, was utilized for constructing a self-assembled hydrogel. The physicochemical properties, the in vitro release profiles of 5-Fluorouracil/methotrexate (anticancer drugs), and the surface morphology of the resulting hydrogel were studied. Moreover, in vivo studies were carried out on female rats bearing breast cancer. The results revealed that the prepared systems were white in color, rubbery, and homogenous. The in vitro release studies showed an efficient ability of the modified system for drug loading and release in a sustained release manner for 14 days. The surface morphology was spongy porous. Moreover, the tumors’ healing was indicated from the analysis of tumor volume, plasma tumor markers, and histopathological analysis, compared to the controlled rats. The pharmacokinetic parameters appeared significant differences (p < 0.05) in the Cmax and Tmax of the medicated hydrogel samples, as compared with sole or combined saline-injected samples. The whole AUC of each drug in the medicated hydrogel samples was five-fold more than the mixture administrated in PBS. In conclusion, the proposed work delivered a hydrogel system that has a convenient ability for localized sustained release of breast cancer management.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献