Relationship between Pharmacokinetic/Pharmacodynamic Target Attainment and Microbiological Outcome in Critically Ill COVID-19 Patients with Documented Gram-Negative Superinfections Treated with TDM-Guided Continuous-Infusion Meropenem

Author:

Sanz Codina MariaORCID,Gatti MiloORCID,Troisi CarlaORCID,Fornaro Giacomo,Pasquini Zeno,Trapani Filippo,Zanoni Andrea,Caramelli FabioORCID,Viale Pierluigi,Pea FedericoORCID

Abstract

Objectives: The objective of this study was to explore the relationship between pharmacokinetic/pharmacodynamic (PK/PD) target attainment of continuous-infusion (CI) meropenem and microbiological outcome in critical COVID-19 patients with documented Gram-negative superinfections. Methods: Patients receiving CI meropenem for documented Gram-negative infections at the COVID ICU of the IRCCS Azienda Ospedaliero-Universitaria di Bologna and undergoing therapeutic drug monitoring from January 2021 to February 2022 were retrospectively assessed. Average steady-state meropenem concentrations (Css) were calculated and the Css/MIC ratio was selected as a pharmacodynamic parameter of meropenem efficacy. The Css/MIC ratio was defined as optimal if ≥4, quasi-optimal if between 1 and 4, and suboptimal if <1. The relationship between Css/MIC and microbiological outcome was assessed. Results: Overall, 43 critical COVID-19 patients with documented Gram-negative infections were retrieved. Combination therapy was implemented in 26 cases. Css/MIC ratios were optimal in 27 (62.8%), quasi-optimal in 7 (16.3%), and suboptimal in 9 cases (20.9%). Microbiological failure occurred in 21 patients (48.8%), with no difference between monotherapy and combination therapy (43.8% vs. 53.8%; p = 0.53). The microbiological failure rate was significantly lower in patients with an optimal Css/MIC ratio compared to those with a quasi-optimal or suboptimal Css/MIC ratio (33.3% vs. 75.0%; p = 0.01). Conclusion: Suboptimal attainment of meropenem PK/PD targets may be a major determinant impacting on microbiological failure in critical COVID-19 patients with Gram-negative superinfections.

Funder

This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant .

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3