Towards Selective Binding to the GLUT5 Transporter: Synthesis, Molecular Dynamics and In Vitro Evaluation of Novel C-3-Modified 2,5-Anhydro-D-mannitol Analogs

Author:

Rana Natasha,Aziz Marwa A.,Oraby Ahmed K.ORCID,Wuest Melinda,Dufour Jennifer,Abouzid Khaled A. M.ORCID,Wuest Frank,West F. G.ORCID

Abstract

Deregulation and changes in energy metabolism are emergent and important biomarkers of cancer cells. The uptake of hexoses in cancer cells is mediated by a family of facilitative hexose membrane-transporter proteins known as Glucose Transporters (GLUTs). In the clinic, numerous breast cancers do not show elevated glucose metabolism (which is mediated mainly through the GLUT1 transporter) and may use fructose as an alternative energy source. The principal fructose transporter in most cancer cells is GLUT5, and its mRNA was shown to be elevated in human breast cancer. This offers an alternative strategy for early detection using fructose analogs. In order to selectively scout GLUT5 binding-pocket requirements, we designed, synthesized and screened a new class of fructose mimics based upon the 2,5-anhydromannitol scaffold. Several of these compounds display low millimolar IC50 values against the known high-affinity 18F-labeled fructose-based probe 6-deoxy-6-fluoro-D-fructose (6-FDF) in murine EMT6 breast cancer cells. In addition, this work used molecular docking and molecular dynamics simulations (MD) with previously reported GLUT5 structures to gain better insight into hexose–GLUT interactions with selected ligands governing their preference for GLUT5 compared to other GLUTs. The improved inhibition of these compounds, and the refined model for their binding, set the stage for the development of high-affinity molecular imaging probes targeting cancers that express the GLUT5 biomarker.

Funder

Canadian Glycomics Network

Alberta Spine Foundation

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3