Radiolabeling Method for Lyophilizate for Dry Powder Inhalation Formulations

Author:

Miyamoto Kahori,Akita Tomomi,Yamashita Chikamasa

Abstract

Human lung deposition data is non-mandatory for drug approval but very useful for the development of orally inhaled drug products. Lung deposition of inhaled drugs can be quantified by radionuclide imaging, for which one of the first considerations is the method used to radiolabel formulations. In this study, we report the development of a radiolabeling method for lyophilizate for dry powder inhalation (LDPI) formulations. TechneCoatTM is one method that can radiolabel drug particles without using solvents. In this method, particles are radiolabeled with a dispersion of 99mTc-labeled nanoparticles called TechnegasTM. Because a LDPI formulation is not comprised of particles but is a lyophilized cake aerosolized by air impact, the TechneCoat method cannot be used for the radiolabeling of LDPI formulations. We therefore modified the TechneCoat apparatus so that LDPI formulations were not aerosolized by the Technegas flow. Radiolabeling using a modified TechneCoat apparatus was validated with model LDPI formulations of interferon alpha (IFN). IFN of 99mTc-unlabeled, IFN of 99mTc-labeled, and 99mTc of 99mTc-labeled LDPI formulations showed similar behavior, and differences from IFN of 99mTc-unlabeled LDPI formulations were within ±15% in aerodynamic particle size distribution measurement. Our radiolabeling method for LDPI formulations may be useful for the quantification of drug deposition in human lungs.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference33 articles.

1. Inhaling medicines: delivering drugs to the body through the lungs

2. Dry powder inhaler: An advance technique for pulmonary drug delivery system;Sahane;Int. J. Pharm. Chem. Sci.,2012

3. Recent Advancements in Non-Invasive Formulations for Protein Drug Delivery

4. Inhalable glucagon-like peptide 1 porous particles prepared by spray freeze drying technique;Pandaya;J. Aerosol Med. Pulm. Drug Deliv.,2016

5. New horizons — alternative routes for insulin therapy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The effects of airway disease on the deposition of inhaled drugs;Expert Opinion on Drug Delivery;2024-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3