Abstract
We previously reported that the bioavailability (BA) of irbesartan (IRB), a BSC class II drug, was improved by preparing nanocrystalline suspensions. However, nanocrystalline suspensions have chemical and physical instabilities and must be converted into tablets through drying approaches in order to overcome such instabilities. In this study, we attempted to design a molded tablet based on nanocrystalline IRB suspensions (IRB-NP tablet) and investigated the effects of this IRB-NP tablet on blood pressure (BP) in a stroke-prone spontaneously hypertensive (SHR-SP) rat. The IRB-NP tablet (with a hardness of 42.6 N) was developed by combining various additives (methylcellulose, 2-hydroxypropyl-β-cyclodextrin HPβCD, D-mannitol, polyvinylpyrrolidone, and gum arabic) followed by bead-milling and freeze-drying treatments. The mean particle size in the redispersions of the IRB-NP tablet was approximately 118 nm. The solubility and intestinal absorption of IRB in the IRB-NP tablet were significantly enhanced in comparison with the microcrystalline IRB tablet (IRB-MP tablet), and both solubility and clathrin-dependent endocytosis helped improve the low BA of the IRB. In addition, the BP-reducing effect of the IRB-NP tablet was significantly higher than that of the IRB-MP tablet. These results provide useful information for the preservation of nanocrystalline suspensions of BCS class II drugs, such as IRB.
Funder
The Ministry of Education, Culture, Sports, Science, and Technology of Japan
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献