Sublingual Atropine Administration as a Tool to Decrease Salivary Glands’ PSMA-Ligand Uptake: A Preclinical Proof of Concept Study Using [68Ga]Ga-PSMA-11

Author:

Nail Vincent,Louis Béatrice,Moyon Anaïs,Chabert Adrien,Balasse Laure,Fernandez Samantha,Hache Guillaume,Garrigue PhilippeORCID,Taïeb David,Guillet BenjaminORCID

Abstract

Prostate Specific Membrane Antigen (PSMA)-directed radionuclide therapy has gained an important role in the management of advanced castration-resistant prostate cancer. Although extremely promising, the prolongation in survival and amelioration of disease-related symptoms must be balanced against the direct toxicities of the treatment. Xerostomia is amongst the most common and debilitating of these, particularly when using an alpha emitter. It is therefore of main importance to develop new preventive strategies. This preclinical study has evaluated the effect of α-adrenergic and anticholinergic drugs on [99mTc]TcO4− Single Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and [68Ga]Ga-PSMA-11 Positron Emission Tomography (PET/CT). Methods: The effects of phenylephrine, scopolamine, atropine, and ipratropium on salivary glands uptake were evaluated in non-tumor-bearing mice by [99mTc]TcO4− microSPECT/CT. The most efficient identified strategy was evaluated in non-tumor-bearing and xenografted mice by [68Ga]Ga-PSMA-11 PET/CT. Results: Scopolamine and atropine showed a significant decrease in the parotid glands’ uptake on SPECT/CT whereas phenylephrine and ipratropium failed. Atropine premedication (sublingual route), which was the most effective strategy, also showed a drastic decrease of [68Ga]Ga-PSMA-11 salivary glands’ uptake in both non-tumor-bearing mice (−51.6% for the parotids, p < 0.0001) and human prostate adenocarcinoma xenografted mice (−26.8% for the parotids, p < 0.0001). Conclusion: Premedication with a local administration of atropine could represent a simple, safe, and efficient approach for reducing salivary glands’ uptake.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3