Gellan-Based Composite System as a Potential Tool for the Treatment of Nervous Tissue Injuries: Cross-Linked Electrospun Nanofibers Embedded in a RC-33-Loaded Freeze-Dried Matrix

Author:

Vigani Barbara,Valentino Caterina,Cavalloro Valeria,Catenacci LauraORCID,Sorrenti MilenaORCID,Sandri GiuseppinaORCID,Bonferoni Maria CristinaORCID,Bozzi Chiara,Collina SimonaORCID,Rossi SilviaORCID,Ferrari Franca

Abstract

Injuries to the nervous system affect more than one billion people worldwide, and dramatically impact on the patient’s quality of life. The present work aimed to design and develop a gellan gum (GG)-based composite system for the local delivery of the neuroprotective sigma-1 receptor agonist, 1-[3-(1,1′-biphen)-4-yl] butylpiperidine (RC-33), as a potential tool for the treatment of tissue nervous injuries. The system, consisting of cross-linked electrospun nanofibers embedded in a RC-33-loaded freeze-dried matrix, was designed to bridge the lesion gap, control drug delivery and enhance axonal regrowth. The gradual matrix degradation should ensure the progressive interaction between the inner fibrous mat and the surrounding cellular environment. Nanofibers, prepared by electrospinning polymeric solutions containing GG, two different grades of poly (ethylene oxide) and poloxamer, were cross-linked with calcium ions. GG-based matrices, loaded with different amounts of RC-33, were prepared by freeze-drying. Dialysis studies and solid-state characterization pointed out the formation of an interaction product between GG and RC-33. RC-33-loaded freeze-dried matrices were characterized by the capability to absorb a high buffer content, forming a gel with marked viscoelastic properties, and by RC-33 controlled release properties. The presence of cross-linked nanofibers increased matrix mechanical resistance.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference51 articles.

1. Neural Tissue Engineering and Regenerative Medicine;Zhang,2009

2. Neurological Disorders Affect Millions Globally: WHO Reporthttps://www.who.int/mental_health/neurology/neurodiso/en/

3. 3D scaffolds for brain tissue regeneration: architectural challenges

4. From basics to clinical: A comprehensive review on spinal cord injury

5. Spinal Cord Injuryhttps://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3