Anti-Melanogenic Mechanism of Tetrahydrocurcumin and Enhancing Its Topical Delivery Efficacy Using a Lecithin-Based Nanoemulsion

Author:

Tang Xudong,Dong QiaoruORCID,Li Jun,Li Fang,Michniak-Kohn Bozena B.,Zhao Denggao,Ho Chi-TangORCID,Huang Qingrong

Abstract

Tetrahydrocurcumin (THC) has been well known for its superior antioxidant properties. Therefore, it is speculated that it might be effective to relieve oxidative stress-induced diseases, such as skin hyperpigmentation. In this work, an in vitro B16F10 melanoma cell model was used to study the impact of THC on the melanogenic process under stressed conditions. It was demonstrated that THC could effectively inhibit the α-MSH (melanocyte-stimulating hormone) induced melanin production in B16F10 melanoma cells and the expressions of three key enzymes involved with the biosynthetic process of melanin, tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2), were all significantly reduced. In addition, an in vitro human keratinocyte cell model was used to investigate the potential protective role of THC on H2O2-induced cytotoxicity. It was found that THC could prevent H2O2-induced oxidative stress based on the results of both the cell viability study and the intracellular ROS (reactive oxygen species) study assessed by the flow cytometry. Last, THC was formulated into a lecithin based nanoemulsion, and an in vitro Franz diffusion cell study using Strat-M® membrane concluded that the nanoemulsion could significantly enhance the membrane permeation compared to the unformatted THC suspension. This research demonstrated the anti-melanogenic benefits of THC on the melanoma and keratinocyte cell models and the topical delivery efficacy could be significantly enhanced using a lecithin based nanoemulsion.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3