Nasal Gel Loaded with Amphotericin Nanotransferosomes as Antifungal Treatment for Fungal Sinusitis

Author:

Hosny Khaled M.,Alhakamy Nabil A.ORCID

Abstract

On the basis of fungal involvement, rhinosinusitis is categorized into allergic, mycetoma, chronic, and acute invasive types. The aim of the current study was to evaluate the efficacy of an amphotericin gel in situ loaded with nanotransferosomes against Aspergillus flavus, which causes allergic rhinosinusitis. A Box–Behnken design was utilized to study the interaction among the nanotransferosomes and optimize independent variables in formulating them, in order to match the prerequisites of selected responses. The optimal formulation was determined to be 300 mg/mL soybean lecithin, 200 mg/mL amphotericin B (AMP), and 150 mg/mL clove oil, resulting in a particle size of 155.09 nm, 84.30% entrapment efficacy (EE), inhibition zone of 16.0 mm, and 0.1197 mmol serum creatinine. The optimized batch was further prepared into an in situ gel and evaluated for various parameters. The optimized formulation released 79.25% AMP and enhanced permeation through the nasal membrane, while the other formulations did not achieve complete absorption. According to in vivo tests using rabbits as animal models, the optimized AMP-nanotransferosomal formulations (NT) in in situ gel result in a non-significant difference among the various kidney function parameters. In conclusion, nasal in situ gel loaded with AMP-clove oil nanotreansfersomes can act as a promising novel carrier that enhances antifungal activity and decreases AMP nephrotoxicity.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3