Effects of Surface Protein Adsorption on the Distribution and Retention of Intratumorally Administered Gold Nanoparticles

Author:

Terracciano RossanaORCID,Zhang Aobo,Butler E. Brian,Demarchi Danilo,Hafner Jason H.,Grattoni AlessandroORCID,Filgueira Carly S.ORCID

Abstract

The heterogeneous distribution of delivery or treatment modalities within the tumor mass is a crucial limiting factor for a vast range of theranostic applications. Understanding the interactions between a nanomaterial and the tumor microenvironment will help to overcome challenges associated with tumor heterogeneity, as well as the clinical translation of nanotheranostic materials. This study aims to evaluate the influence of protein surface adsorption on gold nanoparticle (GNP) biodistribution using high-resolution computed tomography (CT) preclinical imaging in C57BL/6 mice harboring Lewis lung carcinoma (LLC) tumors. LLC provides a valuable model for study due to its highly heterogenous nature, which makes drug delivery to the tumor challenging. By controlling the adsorption of proteins on the GNP surface, we hypothesize that we can influence the intratumoral distribution pattern and particle retention. We performed an in vitro study to evaluate the uptake of GNPs by LLC cells and an in vivo study to assess and quantify the GNP biodistribution by injecting concentrated GNPs citrate-stabilized or passivated with bovine serum albumin (BSA) intratumorally into LLC solid tumors. Quantitative CT and inductively coupled plasma optical emission spectrometry (ICP-OES) results both confirm the presence of particles in the tumor 9 days post-injection (n = 8 mice/group). A significant difference is highlighted between citrate-GNP and BSA-GNP groups (** p < 0.005, Tukey’s multiple comparisons test), confirming that the protein corona of GNPs modifies intratumoral distribution and retention of the particles. In conclusion, our investigations show that the surface passivation of GNPs influences the mechanism of cellular uptake and intratumoral distribution in vivo, highlighting the spatial heterogeneity of the solid tumor.

Funder

Houston Methodist Research Institute

Golfers Against Cancer

Collaborative seed funding from Rice University and Houston Methodist Research Institute

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3