External Evaluation of Population Pharmacokinetic Models and Bayes-Based Dosing of Infliximab

Author:

Konecki Celine,Feliu CatherineORCID,Cazaubon YoannORCID,Giusti Delphine,Tonye-Libyh Marcelle,Brixi Hedia,Cadiot Guillaume,Biron Amélie,Djerada ZoubirORCID

Abstract

Despite the well-demonstrated efficacy of infliximab in inflammatory diseases, treatment failure remains frequent. Dose adjustment using Bayesian methods has shown in silico its interest in achieving target plasma concentrations. However, most of the published models have not been fully validated in accordance with the recommendations. This study aimed to submit these models to an external evaluation and verify their predictive capabilities. Eight models were selected for external evaluation, carried out on an independent database (409 concentrations from 157 patients). Each model was evaluated based on the following parameters: goodness-of-fit (comparison of predictions to observations), residual error model (population weighted residuals (PWRES), individual weighted residuals (IWRES), and normalized prediction distribution errors (NPDE)), and predictive performances (prediction-corrected visual predictive checks (pcVPC) and Bayesian simulations). The performances observed during this external evaluation varied greatly from one model to another. The eight evaluated models showed a significant bias in population predictions (from −7.19 to 7.38 mg/L). Individual predictions showed acceptable bias and precision for six of the eight models (mean error of −0.74 to −0.29 mg/L and mean percent error of −16.6 to −0.4%). Analysis of NPDE and pcVPC confirmed these results and revealed a problem with the inclusion of several covariates (weight, concomitant immunomodulatory treatment, presence of anti-drug antibodies). This external evaluation showed satisfactory results for some models, notably models A and B, and highlighted several prospects for improving the pharmacokinetic models of infliximab for clinical-biological application.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3