Abstract
Cancer, which is a leading cause of death, contributes significantly to reducing life expectancy worldwide. Even though paclitaxel (PTX) is known as one of the main anticancer drugs, it has several limitations, including low solubility in aqueous solutions, a limited dosage range, an insufficient release amount, and patient resistance. To overcome these limitations, we suggest the development of PTX-loaded thermosponge nanoparticles (PTX@TNP), which result in improved anticancer effects, via a simple nanoprecipitation method, which allows the preparation of PTX@TNPs with hydrophobic interactions without any chemical conjugation. Further, to improve the drug content and yield of the prepared complex, the co-organic solvent ratio was optimized. Thus, it was observed that the drug release rate increased as the drug capacity of PTX@TNPs increased. Furthermore, increasing PTX loading led to considerable anticancer activity against multidrug resistance (MDR)-related colorectal cancer cells (HCT 15), implying a synergistic anticancer effect. These results suggest that the solubilization of high drug amounts and the controlled release of poorly water-soluble PTX using TNPs could significantly improve its anticancer therapy, particularly in the treatment of MDR-p-glycoprotein-overexpressing cancers.
Funder
National Research Foundation of Korea
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献