Untangling Dual-Targeting Therapeutic Mechanism of Epidermal Growth Factor Receptor (EGFR) Based on Reversed Allosteric Communication

Author:

Qiu Yuran,Yin Xiaolan,Li Xinyi,Wang Yuanhao,Fu Qiang,Huang Renhua,Lu Shaoyong

Abstract

Dual-targeting therapeutics by coadministration of allosteric and orthosteric drugs is drawing increased attention as a revolutionary strategy for overcoming the drug-resistance problems. It was further observed that the occupation of orthosteric sites by therapeutics agents has the potential to enhance allosteric ligand binding, which leads to improved potency of allosteric drugs. Epidermal growth factor receptor (EGFR), as one of the most critical anti-cancer targets belonging to the receptor tyrosine kinase family, represents a quintessential example. It was revealed that osimertinib, an ATP-competitive covalent EGFR inhibitor, remarkably enhanced the affinity of a recently developed allosteric inhibitor JBJ-04-125-02 for EGFRL858R/T790M. Here, we utilized extensive large-scale molecular dynamics simulations and the reversed allosteric communication to untangle the detailed molecular underpinning, in which occupation of osimertinib at the orthosteric site altered the overall conformational ensemble of EGFR mutant and reshaped the allosteric site via long-distance signaling. A unique intermediate state resembling the active conformation was identified, which was further stabilized by osimertinib loading. Based on the allosteric communication pathway, we predicted a novel allosteric site positioned around K867, E868, H893, and K960 within the intermediate state. Its correlation with the orthosteric site was validated by both structural and energetic analysis, and its low sequence conservation indicated the potential for selective targeting across the human kinome. Together, these findings not only provided a mechanistic basis for future clinical application of the dual-targeting therapeutics, but also explored an innovative perception of allosteric inhibition of tyrosine kinase signaling.

Funder

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3