A New Validation Methodology for In Silico Tools Based on X-ray Computed Tomography Images of Tablets and a Performance Analysis of One Tool

Author:

Bollmann Sebastian,Kleinebudde Peter

Abstract

In silico tools which predict the dissolution of pharmaceutical dosage forms using virtual matrices can be validated with virtual matrices based on X-ray micro-computed tomography images of real pharmaceutical formulations. Final processed images of 3 different tablet batches were used to check the performance of the in silico tool F-CAD. The goal of this work was to prove the performance of the software by comparing the predicted dissolution profiles to the experimental ones and to check the feasibility and application of the validation concept for in silico tools. Both virtual matrices based on X-ray micro-computed tomography images and designed by the software itself were used. The resulting dissolution curves were compared regarding their similarity to the experimental curve. The kinetics were analysed with the Higuchi and Korsmeyers–Peppas plot. The whole validation concept as such was feasible and worked well. It was possible to identify prediction errors of the software F-CAD and issues with the virtual tablets designed within the software.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3