An Injectable Nano-Enabled Thermogel to Attain Controlled Delivery of p11 Peptide for the Potential Treatment of Ocular Angiogenic Disorders of the Posterior Segment

Author:

du Toit Lisa Claire,Choonara Yahya EssopORCID,Pillay VinessORCID

Abstract

This investigation focused on the design of an injectable nano-enabled thermogel (nano-thermogel) system to attain controlled delivery of p11 anti-angiogenic peptide for proposed effective prevention of neovascularisation and to overcome the drawbacks of the existing treatment approaches for ocular disorders characterised by angiogenesis, which employ multiple intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) antibodies. Synthesis of a polyethylene glycol-polycaprolactone-polyethylene glycol (PEG-PCL-PEG) triblock co-polymer was undertaken, followed by characterisation employing Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and differential scanning calorimetry (DSC) to ascertain the chemical stability and integrity of the co-polymer instituted for nano-thermogel formulation. The p11 anti-angiogenic peptide underwent encapsulation within poly(lactic-co-glycolic acid) (PLGA) nanoparticles via a double emulsion solvent evaporation method and was incorporated into the thermogel following characterisation by scanning electron microscopy (SEM), zeta size and zeta-potential analysis. The tube inversion approach and rheological analysis were employed to ascertain the thermo-sensitive sol-gel conversion of the nano-thermogel system. Chromatographic assessment of the in vitro release of the peptide was performed, with stability confirmation via Tris-Tricine PAGE (Polyacrylamide Gel Electrophoresis). In vitro biocompatibility of the nano-thermogel system was investigated employing a retinal cell line (ARP-19). A nanoparticle size range of 100–200 nm and peptide loading efficiency of 67% was achieved. Sol-gel conversion of the nano-thermogel was observed between 32–45 °C. Release of the peptide in vitro was sustained, with maintenance of stability, for 60 days. Biocompatibility assessment highlighted 97–99% cell viability with non-haemolytic ability, which supports the potential applicability of the nano-thermogel system for extended delivery of peptide for ocular disorder treatment.

Funder

National Research Foundation of South Africa

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3