Abstract
On-demand drug delivery systems using nanofibers have attracted significant attention owing to their controllable properties for drug release through external stimuli. Near-infrared (NIR)-responsive nanofibers provide a platform where the drug release profile can be achieved by the on-demand supply of drugs at a desired dose for cancer therapy. Nanomaterials such as gold nanorods (GNRs) exhibit absorbance in the NIR range, and in response to NIR irradiation, they generate heat as a result of a plasmon resonance effect. In this study, we designed poly (N-isopropylacrylamide) (PNIPAM) composite nanofibers containing GNRs. PNIPAM is a heat-reactive polymer that provides a swelling and deswelling property to the nanofibers. Electrospun nanofibers have a large surface-area-to-volume ratio, which is used to effectively deliver large quantities of drugs. In this platform, both hydrophilic and hydrophobic drugs can be introduced and manipulated. On-demand drug delivery systems were obtained through stimuli-responsive nanofibers containing GNRs and PNIPAM. Upon NIR irradiation, the heat generated by the GNRs ensures shrinking of the nanofibers owing to the thermal response of PNIPAM, thereby resulting in a controlled drug release. The versatility of the light-responsive nanofibers as a drug delivery platform was confirmed in cell studies, indicating the advantages of the swelling and deswelling property of the nanofibers and on–off drug release behavior with good biocompatibility. In addition, the system has potential for the combination of chemotherapy with multiple drugs to enhance the effectiveness of complex cancer treatments.
Funder
National Research Foundation of Korea
Commercialization Promotion Agency for R&D Outcomes
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献