Oral Proteasomal Inhibitors Ixazomib, Oprozomib, and Delanzomib Upregulate the Function of Organic Anion Transporter 3 (OAT3): Implications in OAT3-Mediated Drug-Drug Interactions

Author:

Fan Yunzhou,Liang Zhengxuan,Zhang Jinghui,You Guofeng

Abstract

Organic anion transporter 3 (OAT3) is mainly expressed at the basolateral membrane of kidney proximal tubules, and is involved in the renal elimination of various kinds of important drugs, potentially affecting drug efficacy or toxicity. Our laboratory previously reported that ubiquitin modification of OAT3 triggers the endocytosis of OAT3 from the plasma membrane to intracellular endosomes, followed by degradation. Oral anticancer drugs ixazomib, oprozomib, and delanzomib, as proteasomal inhibitors, target the ubiquitin–proteasome system in clinics. Therefore, this study investigated the effects of ixazomib, oprozomib, and delanzomib on the expression and transport activity of OAT3 and elucidated the underlying mechanisms. We showed that all three drugs significantly increased the accumulation of ubiquitinated OAT3, which was consistent with decreased intracellular 20S proteasomal activity; stimulated OAT3-mediated transport of estrone sulfate and p-aminohippuric acid; and increased OAT3 surface expression. The enhanced transport activity and OAT3 expression following drug treatment resulted from an increase in maximum transport velocity of OAT3 without altering the substrate binding affinity, and from a decreased OAT3 degradation. Together, our study discovered a novel role of anticancer agents ixazomib, oprozomib, and delanzomib in upregulating OAT3 function, unveiled the proteasome as a promising target for OAT3 regulation, and provided implication of OAT3-mediated drug–drug interactions, which should be warned against during combination therapies with proteasome inhibitor drugs.

Funder

National Institute of General Medical Sciences

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3