Experimental and Computational Observations of Immunogenic Cobalt Porphyrin Lipid Bilayers: Nanodomain-Enhanced Antigen Association

Author:

Federizon Jasmin,Feugmo Conrard Giresse Tetsassi,Huang Wei-Chiao,He Xuedan,Miura KazutoyoORCID,Razi Aida,Ortega Joaquin,Karttunen MikkoORCID,Lovell Jonathan F.ORCID

Abstract

Cobalt porphyrin phospholipid (CoPoP) can incorporate within bilayers to enable non-covalent surface-display of antigens on liposomes by mixing with proteins bearing a polyhistidine tag (his-tag); however, the mechanisms for how this occurs are poorly understood. These were investigated using the his-tagged model antigen Pfs25, a protein antigen candidate for malaria transmission-blocking vaccines. Pfs25 was found to associate with the small molecule aquocobalamin, a form of vitamin B12 and a cobalt-containing corrin macrocycle, but without particle formation, enabling comparative assessment. Relative to CoPoP liposomes, binding and serum stability studies indicated a weaker association of Pfs25 to aquocobalamin or cobalt nitrilotriacetic acid (Co-NTA) liposomes, which have cobalt displayed in the aqueous phase on lipid headgroups. Antigen internalization by macrophages was enhanced with Pfs25 bound to CoPoP liposomes. Immunization in mice with Pfs25 bound to CoPoP liposomes elicited antibodies that recognized ookinetes and showed transmission-reducing activity. To explore the physical mechanisms involved, we employed molecular dynamics (MD) simulations of bilayers containing phospholipid, cholesterol, as well as either CoPoP or NTA-functionalized lipids. The results show that the CoPoP-containing bilayer creates nanodomains that allow access for a limited but sufficient amount of water molecules that could be replaced by his-tags due to their favorable free energy properties allowing for stabilization. The position of the metal center within the NTA liposomes was much more exposed to the aqueous environment, which could explain its limited capacity for stabilizing Pfs25. This study illustrates the impact of CoPoP-induced antigen particleization in enhancing vaccine efficacy, and provides molecular insights into the CoPoP bilayer properties that enable this.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3