Modeling and Simulation of Process Technology for Nanoparticulate Drug Formulations—A Particle Technology Perspective

Author:

Uhlemann JensORCID,Diedam Holger,Hoheisel Werner,Schikarski TobiasORCID,Peukert Wolfgang

Abstract

Crystalline organic nanoparticles and their amorphous equivalents (ONP) have the potential to become a next-generation formulation technology for dissolution-rate limited biopharmaceutical classification system (BCS) class IIa molecules if the following requisites are met: (i) a quantitative understanding of the bioavailability enhancement benefit versus established formulation technologies and a reliable track record of successful case studies are available; (ii) efficient experimentation workflows with a minimum amount of active ingredient and a high degree of digitalization via, e.g., automation and computer-based experimentation planning are implemented; (iii) the scalability of the nanoparticle-based oral delivery formulation technology from the lab to manufacturing is ensured. Modeling and simulation approaches informed by the pharmaceutical material science paradigm can help to meet these requisites, especially if the entire value chain from formulation to oral delivery is covered. Any comprehensive digitalization of drug formulation requires combining pharmaceutical materials science with the adequate formulation and process technologies on the one hand and quantitative pharmacokinetics and drug administration dynamics in the human body on the other hand. Models for the technical realization of the drug production and the distribution of the pharmaceutical compound in the human body are coupled via the central objective, namely bioavailability. The underlying challenges can only be addressed by hierarchical approaches for property and process design. The tools for multiscale modeling of the here-considered particle processes (e.g., by coupled computational fluid dynamics, population balance models, Noyes–Whitney dissolution kinetics) and physiologically based absorption modeling are available. Significant advances are being made in enhancing the bioavailability of hydrophobic compounds by applying innovative solutions. As examples, the predictive modeling of anti-solvent precipitation is presented, and options for the model development of comminution processes are discussed.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3