Mechanism of Riparian Vegetation Growth and Sediment Transport Interaction in Floodplain: A Dynamic Riparian Vegetation Model (DRIPVEM) Approach

Author:

Baniya Mahendra B.,Asaeda Takashi,Fujino Takeshi,Jayasanka Senavirathna M. D. H.,Muhetaer Guligena,Li Jinghao

Abstract

The ecological dynamics of riparian areas interact with sediment transport in river systems, which plays an active role in riparian vegetation growth in the floodplain. The fluvial dynamics, hydraulics, hydro-meteorological and geomorphological characteristics of rivers are associated with sediment transport in river systems and around the riparian area. The flood disturbance, sediment with nutrients and seeds transported by river, sediment deposition, and erosion phenomena in the floodplain change the bare land area to vegetation area and vice versa. The difference in riparian vegetation area in the river floodplain is dependent on the sediment grain size distribution which is deposited in the river floodplain. Mathematical models describing vegetation growth in a short period exist in literature, but long-term modelling and validations are still lacking. In order to cover long-term vegetation growth modelling, a Dynamic Riparian Vegetation Model (DRIPVEM) was proposed. This paper highlights the existing modelling technique of DRIPVEM coupled with a Dynamic Herbaceous Model used to establish the interactive relationship of sediment grain sizes and riparian vegetation in the floodplain.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3