Implementation of Omni-D Tele-Presence Robot Using Kalman Filter and Tricon Ultrasonic Sensors

Author:

Tariq HassanORCID,Rashid MuhammadORCID,Javed AsfaORCID,Riaz Muhammad AaqibORCID,Sinky Mohammed,Zia Muhammad Yousuf IrfanORCID

Abstract

The tele-presence robot is designed to set forth an economic solution to facilitate day-to-day normal activities in almost every field. There are several solutions to design tele-presence robots, e.g., Skype and team viewer, but it is pretty inappropriate to use Skype and extra hardware. Therefore, in this article, we have presented a robust implementation of the tele-presence robot. Our proposed omnidirectional tele-presence robot consists of (i) Tricon ultrasonic sensors, (ii) Kalman filter implementation and control, and (iii) integration of our developed WebRTC-based application with the omnidirectional tele-presence robot for video transmission. We present a new algorithm to encounter the sensor noise with the least number of sensors for the estimation of Kalman filter. We have simulated the complete model of robot in Simulink and Matlab for the tough paths and critical hurdles. The robot successfully prevents the collision and reaches the destination. The mean errors for the estimation of position and velocity are 5.77% and 2.04%. To achieve efficient and reliable video transmission, the quality factors such as resolution, encoding, average delay and throughput are resolved using the WebRTC along with the integration of the communication protocols. To protect the data transmission, we have implemented the SSL protocol and installed it on the server. We tested three different cases of video resolutions (i.e., 320×280, 820×460 and 900×590) for the performance evaluation of the video transmission. For the highest resolution, our TPR takes 3.5 ms for the encoding, and the average delay is 2.70 ms with 900 × 590 pixels.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Implementation of Telepresence Robot;2023 IEEE 8th International Conference on Engineering Technologies and Applied Sciences (ICETAS);2023-10-25

2. Analysis of trajectory and motion parameters of an industrial robot cooperating with a numerically controlled machine tools;Journal of Manufacturing Processes;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3