Abstract
A novel methodology to estimate the effectiveness factor (EF) of an immobilized enzyme catalyst is proposed here. The methodology consists of the determination of the productivity of both the immobilized enzyme catalyst and its corresponding soluble enzyme, plotted as a function of the reaction conversion. The ratio of these productivities corresponds to the EF estimator of the catalyst. Conversion curves were simulated in a batch reactor with immobilized enzyme and soluble enzyme for different values of the S0/KM ratio and Thiele modulus (Φ) to demonstrate this hypothesis. Two different reaction orders were tested: first-order kinetic and Michaelis–Menten-based kinetic with product inhibition. The results showed that the ratio of productivities between the immobilized and soluble enzymes followed the behavior profile presented by the EF with satisfactory agreement. This simple methodology to estimate the EF is based on routine conversion experiments, thus avoiding the exhaustive kinetic and mass transfer characterization of the immobilized enzyme catalyst.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献