The Use of a γ-Al2O3 and MgO Mixture in the Catalytic Conversion of 1,1,1,2-Tetrafluoroethane (HFC-134a)

Author:

Jeong Sangjae,Sudibya Gamal Luckman,Jeon Jong-Ki,Kim Young-Min,Swamidoss Caroline Mercy AndrewORCID,Kim Seungdo

Abstract

This paper reports the improved efficiency of 1,1,1,2-tetrafluoroethane (HFC-134a) decomposition by combined use of MgO with γ-Al2O3. While a high temperature (>900 °C) was required to achieve 90% conversion during non-catalytic pyrolysis of HFC-134a, 100% conversion of HFC-134a was achieved at 600 °C by the use of γ-Al2O3. Among the three catalysts (γ-Al2O3, MgO, and CaO) tested in this study, γ-Al2O3 showed the highest HFC-134a decomposition efficiency, followed by MgO and CaO, due to its large surface area and large amount of weak acid sites. Also with the longest lifetime among the catalysts, durability in maintaining complete decomposition of HFC-134a was shown in γ-Al2O3. The addition of MgO to γ-Al2O3 was effective in extending the lifetime of γ-Al2O3 due to the efficient interaction between HF and MgO, which can delay the deactivation of γ-Al2O3. Compared to the double bed γ-Al2O3-MgO configuration, the use of a mixed γ-Al2O3-MgO bed extended the catalyst lifetime more effectively.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference20 articles.

1. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007

2. Emissions and Supply of Fluorinated Greenhouse Gaseshttps://www.eea.europa.eu/data-and-maps/indicators/emissions-and-consumption-of-fluorinated-2/assessment

3. Kigali Amendment to the Montreal Protocol: A Crucial Step in the Fight against Catastrophic Climate Changehttps://eia-international.org/wp-content/uploads/EIA-Kigali-Amendment-to-the-Montreal-Protocol-FINAL.pdf

4. Treatment of the potent greenhouse gas, CHF3—An overview

5. Destruction of Freon HFC-134a Using a Nozzleless Microwave Plasma Source

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3