Ag- and Cu-Promoted Mesoporous Ta-SiO2 Catalysts Prepared by Non-Hydrolytic Sol-Gel for the Conversion of Ethanol to Butadiene

Author:

Dochain Denis D.,Stýskalík AlešORCID,Debecker Damien P.ORCID

Abstract

The direct catalytic conversion of bioethanol to butadiene, also known as the Lebedev process, is one of the most promising solution to replace the petro-based production of this important bulk chemical. Considering the intricate reaction mechanism—where a combination of acid-catalyzed dehydration reactions and metal-catalyzed dehydrogenation have to take place simultaneously—tailor-made bifunctional catalysts are required. We propose to use non-hydrolytic sol-gel (NHSG) chemistry to prepare mesoporous Ta-SiO2 materials which are further promoted by Ag via impregnation. An acetamide elimination route is presented, starting from silicon tetraacetate and pentakis(dimethylamido)tantalum(V), in the presence of a Pluronic surfactant. The catalysts display advantageous texture, with specific surface area in the 600–1000 m² g−1 range, large pore volume (0.6–1.0 mL g−1), an average pore diameter of 4 nm and only a small contribution from micropores. Using an array of characterization techniques, we show that NHSG allows achieving a high degree of dispersion of tantalum, mainly incorporated as single sites in the silica matrix. The presence of these monomeric TaOx active sites is responsible for the much higher dehydration ability, as compared to the corresponding catalyst prepared by impregnation of Ta onto a pristine silica support. We attempt to optimize the butadiene yield by changing the relative proportion of Ta and Ag and by tuning the space velocity. We also demonstrate that Ag or Cu can be introduced directly in one step, during the NHSG process. Copper doping is shown to be much more efficient than silver doping to guide the reaction towards the production of butadiene.

Funder

Fonds De La Recherche Scientifique - FNRS

Horizon 2020

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3